skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nichols, Ross C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Antarctic humpback whales forage in summer, coincident with the seasonal abundance of their primary prey, the Antarctic krill. During the feeding season, humpback whales accumulate energy stores sufficient to fuel their fasting period lasting over six months. Previous animal movement modelling work (using area-restricted search as a proxy) suggests a hyperphagic period late in the feeding season, similar in timing to some terrestrial fasting mammals. However, no direct measures of seasonal foraging behaviour existed to corroborate this hypothesis. We attached high-resolution, motion-sensing biologging tags to 69 humpback whales along the Western Antarctic Peninsula throughout the feeding season from January to June to determine how foraging effort changes throughout the season. Our results did not support existing hypotheses: we found a significant reduction in foraging presence and feeding rates from the beginning to the end of the feeding season. During the early summer period, feeding occurred during all hours at high rates. As the season progressed, foraging occurred mostly at night and at lower rates. We provide novel information on seasonal changes in foraging of humpback whales and suggest that these animals, contrary to nearly all other animals that seasonally fast, exhibit high feeding rates soon after exiting the fasting period 
    more » « less
  2. Abstract Bio-logging devices equipped with inertial measurement units—particularly accelerometers, magnetometers, and pressure sensors—have revolutionized our ability to study animals as necessary electronics have gotten smaller and more affordable over the last two decades. These animal-attached tags allow for fine scale determination of behavior in the absence of direct observation, particularly useful in the marine realm, where direct observation is often impossible, and recent devices can integrate more power hungry and sensitive instruments, such as hydrophones, cameras, and physiological sensors. To convert the raw voltages recorded by bio-logging sensors into biologically meaningful metrics of orientation (e.g., pitch, roll and heading), motion (e.g., speed, specific acceleration) and position (e.g., depth and spatial coordinates), we developed a series of MATLAB tools and online instructional tutorials. Our tools are adaptable for a variety of devices, though we focus specifically on the integration of video, audio, 3-axis accelerometers, 3-axis magnetometers, 3-axis gyroscopes, pressure, temperature, light and GPS data that are the standard outputs from Customized Animal Tracking Solutions (CATS) video tags. Our tools were developed and tested on cetacean data but are designed to be modular and adaptable for a variety of marine and terrestrial species. In this text, we describe how to use these tools, the theories and ideas behind their development, and ideas and additional tools for applying the outputs of the process to biological research. We additionally explore and address common errors that can occur during processing and discuss future applications. All code is provided open source and is designed to be useful to both novice and experienced programmers. 
    more » « less
  3. Abstract The krill surplus hypothesis of unlimited prey resources available for Antarctic predators due to commercial whaling in the 20th century has remained largely untested since the 1970s. Rapid warming of the Western Antarctic Peninsula (WAP) over the past 50 years has resulted in decreased seasonal ice cover and a reduction of krill. The latter is being exacerbated by a commercial krill fishery in the region. Despite this, humpback whale populations have increased but may be at a threshold for growth based on these human‐induced changes. Understanding how climate‐mediated variation in prey availability influences humpback whale population dynamics is critical for focused management and conservation actions. Using an 8‐year dataset (2013–2020), we show that inter‐annual humpback whale pregnancy rates, as determined from skin‐blubber biopsy samples (n = 616), are positively correlated with krill availability and fluctuations in ice cover in the previous year. Pregnancy rates showed significant inter‐annual variability, between 29% and 86%. Our results indicate that krill availability is in fact limiting and affecting reproductive rates, in contrast to the krill surplus hypothesis. This suggests that this population of humpback whales may be at a threshold for population growth due to prey limitations. As a result, continued warming and increased fishing along the WAP, which continue to reduce krill stocks, will likely impact this humpback whale population and other krill predators in the region. Humpback whales are sentinel species of ecosystem health, and changes in pregnancy rates can provide quantifiable signals of the impact of environmental change at the population level. Our findings must be considered paramount in developing new and more restrictive conservation and management plans for the Antarctic marine ecosystem and minimizing the negative impacts of human activities in the region. 
    more » « less